Solution of the Hammerstein Equations under Non–monotone Perturbations
نویسندگان
چکیده
The aim of this note is to study convergence and convergence rates of the regularized solutions for the operator equation of Hammerstein type x + F2F1(x) = f in reflexive Banach spaces under the non-monotone perturbations F h 2 and F h 1 of the operators F2 and F1, respectively.
منابع مشابه
Approximation of Solutions of Equations of Hammerstein Type in Hilbert Spaces
Let H be a real Hilbert space. Let K, F : H → H be bounded, continuous and monotone mappings. Suppose that u∗ ∈ H is a solution to Hammerstein equation u + KFu = 0. We introduce a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the Hammerstein equation.
متن کاملANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE
Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...
متن کاملApproximation of solutions of generalized equations of Hammerstein type
Let H be a real Hilbert space. For each i = 1, 2, ...m, let Fi, Ki : H → H be bounded and monotone mappings. Assume that the generalized Hammerstein equation u + ∑m i=1 KiFiu = 0 has a solution in H. We construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein equation. Our iterative scheme in this paper seems far simpl...
متن کاملNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
متن کاملSolution of nonlinear Volterra-Hammerstein integral equations using alternative Legendre collocation method
Alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear Volterra-Hammerstein integral equations. For this purpose, the operational matrices of integration and the product for ALPs are derived. Then, using the collocation method, the considered problem is reduced into a set of nonlinear algebraic equations. The error analysis of the method is given an...
متن کامل